Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Bull World Health Organ ; 102(4): 288-295, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38562197

ABSTRACT

The World Health Organization (WHO) aims to reduce new leprosy cases by 70% by 2030, necessitating advancements in leprosy diagnostics. Here we discuss the development of two WHO's target product profiles for such diagnostics. These profiles define criteria for product use, design, performance, configuration and distribution, with a focus on accessibility and affordability. The first target product profile outlines requirements for tests to confirm diagnosis of leprosy in individuals with clinical signs and symptoms, to guide multidrug treatment initiation. The second target product profile outlines requirements for tests to detect Mycobacterium leprae or M. lepromatosis infection among asymptomatic contacts of leprosy patients, aiding prophylactic interventions and prevention. Statistical modelling was used to assess sensitivity and specificity requirements for these diagnostic tests. The paper highlights challenges in achieving high specificity, given the varying endemicity of M. leprae, and identifying target analytes with robust performance across leprosy phenotypes. We conclude that diagnostics with appropriate product design and performance characteristics are crucial for early detection and preventive intervention, advocating for the transition from leprosy management to prevention.


L'Organisation mondiale de la Santé (OMS) vise à réduire le nombre de nouveaux cas de lèpre de 70% d'ici 2030, ce qui nécessite un meilleur diagnostic de la maladie. Dans le présent document, nous évoquons le développement de deux profils de produit cible établis par l'OMS à cette fin. Ces profils définissent des critères en matière d'utilisation, de conception, de performances, de configuration et de distribution du produit, en accordant une attention particulière à l'accessibilité et à l'abordabilité. Le premier profil de produit cible décrit les exigences pour les tests servant à confirmer le diagnostic de la lèpre chez les individus qui présentent des signes cliniques et des symptômes, afin d'orienter l'instauration d'un traitement à base de plusieurs médicaments. Le second profil de produit cible décrit les exigences pour les tests servant à détecter une infection à Mycobacterium leprae ou M. lepromatosis parmi les contacts asymptomatiques de patients lépreux, ce qui contribue à l'adoption de mesures prophylactiques et à la prévention. Nous avons eu recours à une modélisation statistique pour évaluer les exigences de sensibilité et de spécificité de ces tests diagnostiques. Cet article met en évidence les obstacles à l'atteinte d'un niveau élevé de spécificité en raison de l'endémicité variable de M. leprae, et à l'identification d'analytes cibles offrant de bons résultats chez les phénotypes lépreux. Nous concluons qu'un diagnostic reposant sur des caractéristiques de performance et de conception appropriées est essentiel pour détecter rapidement la maladie et intervenir en amont, et nous plaidons pour une prévention plutôt qu'une gestion de la lèpre.


La Organización Mundial de la Salud (OMS) pretende reducir los nuevos casos de lepra en un 70% para 2030, lo que requiere avances en el diagnóstico de la lepra. Aquí se analiza el desarrollo de dos perfiles de productos objetivo de la OMS para este tipo de diagnósticos. Estos perfiles definen los criterios de uso, diseño, rendimiento, configuración y distribución de los productos, centrándose en su accesibilidad y asequibilidad. El primer perfil de producto objetivo describe los requisitos de las pruebas para confirmar el diagnóstico de la lepra en personas con signos y síntomas clínicos, con el fin de orientar el inicio del tratamiento con múltiples fármacos. El segundo perfil de producto objetivo describe los requisitos de las pruebas para detectar la infección por Mycobacterium leprae o M. lepromatosis entre los contactos asintomáticos de los pacientes con lepra, para facilitar las intervenciones profilácticas y la prevención. Se utilizaron modelos estadísticos para evaluar los requisitos de sensibilidad y especificidad de estas pruebas diagnósticas. El artículo destaca las dificultades para lograr una alta especificidad, dada la diferente endemicidad de M. leprae, y para identificar analitos diana con un rendimiento sólido en todos los fenotipos de lepra. Concluimos que los diagnósticos con un diseño de producto y unas características de rendimiento adecuados son fundamentales para la detección precoz y la intervención preventiva, lo que favorece la transición del manejo de la lepra a la prevención.


Subject(s)
Leprosy , Humans , Leprosy/diagnosis , Leprosy/drug therapy , Mycobacterium leprae/genetics , Sensitivity and Specificity , Models, Statistical , Early Diagnosis
2.
J Travel Med ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602709

ABSTRACT

We describe a case of leprosy in an immunocompromised Dutch male whose parents were born in a leprosy-endemic country. The use of immunosuppressive drugs in Mycobacterium leprae infected individuals therefore increases the risk of development of leprosy. Exposure and infection at a young age through his parents is another possible risk factor.

3.
Rheumatology (Oxford) ; 63(2): 563-570, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37280058

ABSTRACT

OBJECTIVES: Autoantibody responses increase years before the onset of inflammatory arthritis (IA) and are stable during transitioning from clinically suspect arthralgia (CSA) to IA. Cytokine and chemokine levels also increase years before IA onset. However, the course in the at-risk stage of CSA during progression to disease or non-progression is unknown. To increase the understanding of processes mediating disease development, we studied the course of cytokine, chemokine and related receptors gene expression in CSA patients during progression to IA and in CSA patients who ultimately did not develop IA. METHODS: Whole-blood RNA expression of 37 inflammatory cytokines, chemokines and related receptors was determined by dual-colour reverse transcription multiplex ligation-dependent probe amplification in paired samples of CSA patients at CSA onset and either at IA development or after 24 months without IA development. ACPA-positive and ACPA-negative CSA patients developing IA were compared at CSA onset and during progression to IA. Generalised estimating equations tested changes over time. A false discovery rate approach was applied. RESULTS: None of the cytokine/chemokine genes significantly changed in expression between CSA onset and IA development. In CSA patients without IA development, G-CSF expression decreased (P = 0.001), whereas CCR6 and TNIP1 expression increased (P < 0.001 and P = 0.002, respectively) over a 2 year period. Expression levels in ACPA-positive and ACPA-negative CSA patients who developed IA were similar. CONCLUSION: Whole-blood gene expression of assessed cytokines, chemokines and related receptors did not change significantly from CSA to IA development. This suggests that changes in expression of these molecules may not be related to the final process of developing chronicity and may have occurred preceding CSA onset. Changes in gene expression in CSA patients without IA development may provide clues for processes related to resolution.


Subject(s)
Arthritis, Rheumatoid , Humans , Arthritis, Rheumatoid/genetics , Cytokines/genetics , Chemokines/genetics , Arthralgia/genetics , Gene Expression
6.
Sci Rep ; 13(1): 18613, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903877

ABSTRACT

The concept of donor-unrestricted T cells (DURTs) comprises a heterogeneity of lymphoid cells that respond to an abundance of unconventional epitopes in a non-MHC-restricted manner. Vaccinologists strive to harness this so far underexplored branch of the immune system for new vaccines against tuberculosis. A particular division of DURTs are T cells that recognize their cognate lipid antigen in the context of CD1-molecules. Mycobacteria are characterized by a particular lipid-rich cell wall. Several of these lipids have been shown to be presented to T cells via CD1b-molecules. Guinea pigs functionally express CD1b and are hence an appropriate small animal model to study the role of CD1b-restricted, lipid-specific immune responses. In the current study, guinea pigs were vaccinated with BCG or highly-purified, liposome-formulated phosphatidylinositol-hexa-mannoside (PIM6) to assess the effect of CD1-restricted DURTs on the course of infection after virulent Mycobacterium tuberculosis (Mtb) challenge. Robust PIM6-specific T cell-responses were observed both after BCG- and PIM6-vaccination. The cellular response was significantly reduced in the presence of monoclonal, CD1b-blocking antibodies, indicating that a predominant part of this reactivity was CD1b-restricted. When animals were challenged with Mtb, BCG- and PIM6-vaccinated animals showed significantly reduced pathology, smaller necrotic granulomas in lymph node and spleen and reduced bacterial loads. While BCG conferred an almost sterile protection in this setting, compared to control animals' lesions were reduced roughly by two thirds in PIM6-vaccinated. Comprehensive histological and transcriptional analyses in the draining lymph node revealed that protected animals showed reduced transcription-levels of inflammatory cyto- and chemokines and higher levels of CD1b-expression on professional antigen cells compared to controls. Although BCG as a comparator induced by far stronger effects, our observations in the guinea pig model suggest that CD1b-restricted, PIM6-reactive DURTs contribute to immune-mediated containment of virulent Mtb.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Guinea Pigs , Animals , BCG Vaccine , Tuberculosis/prevention & control , Vaccination , Phosphatidylinositols
7.
Front Med (Lausanne) ; 10: 1260375, 2023.
Article in English | MEDLINE | ID: mdl-37828950

ABSTRACT

Background: It has been amply described that levels of IgM antibodies against Mycobacterium leprae (M. leprae) phenolic glycolipid I (PGL-I) correlate strongly with the bacterial load in an infected individual. These findings have generated the concept of using seropositivity for antibodies against M. leprae PGL-I as an indicator of the proportion of the population that has been infected. Although anti-PGL-I IgM levels provide information on whether an individual has ever been infected, their presence cannot discriminate between recent and past infections. Since infection in (young) children by definition indicates recent transmission, we piloted the feasibility of assessment of anti-PGL-I IgM seroprevalence among children in a leprosy endemic area in India as a proxy for recent M. leprae transmission. Material and methods: A serosurvey for anti-PGL-I IgM antibodies among children in highly leprosy endemic villages in Bihar, India, was performed, applying the quantitative anti-PGL-I UCP-LFA cassette combined with low-invasive, small-volume fingerstick blood (FSB). Results: Local staff obtained FSB of 1,857 children (age 3-11 years) living in 12 leprosy endemic villages in Bihar; of these, 215 children (11.58%) were seropositive for anti-PGL-I IgM. Conclusion: The anti-PGL-I seroprevalence level of 11.58% among children corresponds with the seroprevalence levels described in studies in other leprosy endemic areas over the past decades where no prophylactic interventions have taken place. The anti-PGL-I UCP-LFA was found to be a low-complexity tool that could be practically combined with serosurveys and was well-accepted by both healthcare staff and the population. On route to leprosy elimination, quantitative anti-PGL-I serology in young children holds promise as a strategy to monitor recent M. leprae transmission in an area.

8.
Front Vet Sci ; 10: 1193332, 2023.
Article in English | MEDLINE | ID: mdl-37655261

ABSTRACT

Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis) infection in cattle, is an economically devastating chronic disease for livestock worldwide. Efficient disease control measures rely on early and accurate diagnosis using the tuberculin skin test (TST) and interferon-gamma release assays (IGRAs), followed by culling of positive animals. Compromised performance of TST and IGRA, due to BCG vaccination or co-infections with non-tuberculous mycobacteria (NTM), urges improved diagnostics. Lateral flow assays (LFAs) utilizing luminescent upconverting reporter particles (UCP) for quantitative measurement of host biomarkers present an accurate but less equipment- and labor-demanding diagnostic test platform. UCP-LFAs have proven applications for human infectious diseases. Here, we report the development of UCP-LFAs for the detection of six bovine proteins (IFN-γ, IL-2, IL-6, CCL4, CXCL9, and CXCL10), which have been described by ELISA as potential biomarkers to discriminate M. bovis infected from naïve and BCG-vaccinated cattle. We show that, in line with the ELISA data, the combined PPDb-induced levels of IFN-γ, IL-2, IL-6, CCL4, and CXCL9 determined by UCP-LFAs can discriminate M. bovis challenged animals from naïve (AUC range: 0.87-1.00) and BCG-vaccinated animals (AUC range: 0.97-1.00) in this cohort. These initial findings can be used to develop a robust and user-friendly multi-biomarker test (MBT) for bTB diagnosis.

9.
J Clin Microbiol ; 61(10): e0026423, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37724874

ABSTRACT

The current four-symptom screen recommended by the World Health Organization (WHO) is widely used as screen to initiate diagnostic testing for active pulmonary tuberculosis (TB), yet the performance is poor especially when TB prevalence is low. In contrast, more sensitive molecular tests are less suitable for placement at primary care level in low-resource settings. In order to meet the WHO End TB targets, new diagnostic approaches are urgently needed to find the missing undiagnosed cases. Proteomics-derived blood host biomarkers have been explored because protein detection technologies are suitable for the point-of-care setting and could meet cost targets. This study aimed to find a biomarker signature that fulfills WHO's target product profile (TPP) for a TB screening. Twelve blood-based protein biomarkers from three sample populations (Vietnam, Peru, and South Africa) were analyzed individually and in combinations via advanced statistical methods and machine learning algorithms. The combination of I-309, SYWC and kallistatin showed the most promising results to discern active TB throughout the data sets meeting the TPP for a triage test in adults from two countries (Peru and South Africa). The top-performing individual markers identified at the global level (I-309 and SYWC) were also among the best-performing markers at country level in South Africa and Vietnam. This analysis clearly shows that a host protein biomarker assay is feasible in adults for certain geographical regions based on one or two biomarkers with a performance that meets minimal WHO TPP criteria.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Adult , Humans , Triage/methods , Tuberculosis/diagnosis , Tuberculosis, Pulmonary/diagnosis , Biomarkers , Blood Proteins/analysis , Sensitivity and Specificity
10.
BMC Infect Dis ; 23(1): 447, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400753

ABSTRACT

BACKGROUND: To improve tuberculosis (TB) diagnosis, the World Health Organisation (WHO) has called for a non-sputum based triage test to focus TB testing on people with a high likelihood of having active pulmonary tuberculosis (TB). Various host or pathogen biomarker-based testing devices are in design stage and require validity assessment. Host biomarkers have shown promise to accurately rule out active TB, but further research is required to determine generalisability. The TriageTB diagnostic test study aims to assess the accuracy of diagnostic test candidates, as well as field-test, finalise the design and biomarker signature, and validate a point-of-care multi-biomarker test (MBT). METHODS: This observational diagnostic study will evaluate sensitivity and specificity of biomarker-based diagnostic candidates including the MBT and Xpert® TB Fingerstick cartridge compared with a gold-standard composite TB outcome classification defined by symptoms, sputum GeneXpert® Ultra, smear and culture, radiological features, response to TB therapy and presence of an alternative diagnosis. The study will be conducted in research sites in South Africa, Uganda, The Gambia and Vietnam which all have high TB prevalence. The two-phase design allows for finalisation of the MBT in Phase 1 in which candidate host proteins will be evaluated on stored serum from Asia, South Africa and South America and on fingerstick blood from 50 newly recruited participants per site. The MBT test will then be locked down and validated in Phase 2 on 250 participants per site. DISCUSSION: By targeting confirmatory TB testing to those with a positive triage test, 75% of negative GXPU may be avoided, thereby reducing diagnostic costs and patient losses during the care cascade. This study builds on previous biomarker research and aims to identify a point-of-care test meeting or exceeding the minimum World Health Organisation target product profile of a 90% sensitivity and 70% specificity. Streamlining TB testing by identifying individuals with a high likelihood of TB should improve TB resources use and, in so doing, improve TB care. TRIAL REGISTRATION: NCT04232618 (clinicaltrials.gov) Date of registration: 16 January 2020.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Point-of-Care Systems , Triage , Tuberculosis/diagnosis , Point-of-Care Testing , Sensitivity and Specificity , Biomarkers
11.
BMC Infect Dis ; 23(1): 310, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37161571

ABSTRACT

BACKGROUND: Leprosy is an ancient infectious disease with an annual global incidence of around 200,000 over the past decade. Since 2018, the World Health Organization (WHO) recommends single-dose rifampicin as post-exposure prophylaxis (SDR-PEP) for contacts of leprosy patients. The Post ExpOsure Prophylaxis for Leprosy (PEOPLE) trial evaluated PEP with a double dose of rifampicin in Comoros and Madagascar. Preliminary results of this trial show some reduction in leprosy incidence in intervention villages but a stronger regimen may be beneficial. The objective of the current Bedaquiline Enhanced ExpOsure Prophylaxis for LEprosy trial (BE-PEOPLE) is to explore effectiveness of a combination of bedaquiline and rifampicin as PEP. METHODS: BE-PEOPLE is a cluster-randomized trial in which 44 clusters in Comoros will be randomized to two study arms. Door-to-door screening will be conducted annually during four years, leprosy patients identified will be offered standard of care treatment. Based on study arm, contacts aged five years and above and living within a 100-meter radius of an index case will either receive bedaquiline (400-800 mg) and rifampicin (150-600 mg) or only rifampicin (150-600 mg). Contacts aged two to four years will receive rifampicin only. Household contacts randomized to the bedaquiline plus rifampicin arm will receive a second dose four weeks later. Incidence rate ratios of leprosy comparing contacts who received either of the PEP regimens will be the primary outcome. We will monitor resistance to rifampicin and/or bedaquiline through molecular surveillance in all incident tuberculosis and leprosy patients nationwide. At the end of the study, we will assess anti-M. leprae PGL-I IgM seropositivity as a proxy for the population burden of M. leprae infection in 8 villages (17,000 individuals) that were surveyed earlier as part of the PEOPLE trial. DISCUSSION: The COLEP trial on PEP in Bangladesh documented a reduction of 57% in incidence of leprosy among contacts treated with SDR-PEP after two years, which led to the WHO recommendation of SDR-PEP. Preliminary results of the PEOPLE trial show a lesser reduction in incidence. The BE-PEOPLE trial will explore whether reinforcing SDR-PEP with bedaquiline increases effectiveness and more rapidly reduces the incidence of leprosy, compared to SDR-PEP alone. TRIAL REGISTRATION: NCT05597280. Protocol version 5.0 on 28 October 2022.


Subject(s)
Leprosy , Rifampin , Humans , Antibodies , Comoros , Leprosy/drug therapy , Leprosy/epidemiology , Leprosy/prevention & control , Mycobacterium leprae , Post-Exposure Prophylaxis , Randomized Controlled Trials as Topic , Rifampin/therapeutic use
12.
Front Microbiol ; 14: 1113318, 2023.
Article in English | MEDLINE | ID: mdl-37051521

ABSTRACT

Background: Mycobacterium leprae transcriptomic and human host immune gene expression signatures that demonstrate a plausible association with type I (T1R) and type II reactions (T2R) aid in early diagnosis, prevention of nerve damage and consequent demyelinating neuropathy in leprosy. The aim of the study is to identify M. leprae and host-associated gene-expression signatures that are associated with reactional states in leprosy. Methods: The differentially expressed genes from the whole transcriptome of M. leprae were determined using genome-wide hybridization arrays with RNA extracted from skin biopsies of 20 T1R, 20 T2R and 20 non reactional controls (NR). Additionally, human immune gene-expressions were profiled using RT2-PCR profiler arrays and real-time qPCRs. Results: The RNA quality was optimal in 16 NR, 18 T1R and 19 T2R samples. Whole transcriptome expression array of these samples revealed significant upregulation of the genes that encode integral and intrinsic membrane proteins, hydrolases and oxidoreductases. In T1R lesional skin biopsy specimens, the top 10 significantly upregulated genes are ML2064, ML1271, ML1960, ML1220, ML2498, ML1996, ML2388, ML0429, ML2030 and ML0224 in comparison to NR. In T2R, genes ML2498, ML1526, ML0394, ML1960, ML2388, ML0429, ML0281, ML1847, ML1618 and ML1271 were significantly upregulated. We noted ML2664 was significantly upregulated in T1R and repressed in T2R. Conversely, we have not noted any genes upregulated in T2R and repressed in T1R. In both T1R and T2R, ML2388 was significantly upregulated. This gene encodes a probable membrane protein and epitope prediction using Bepipred-2.0 revealed a distinct B-cell epitope. Overexpression of ML2388 was noted consistently across the reaction samples. From the host immune gene expression profiles, genes for CXCL9, CXCL10, CXCL2, CD40LG, IL17A and CXCL11 were upregulated in T1R when compared to the NR. In T2R, CXCL10, CXCL11, CXCL9, CXCL2 and CD40LG were upregulated when compared to the NR group. Conclusion: A gene set signature involving bacterial genes ML2388, ML2664, and host immune genes CXCL10 and IL-17A can be transcriptomic markers for reactional states in leprosy.

13.
iScience ; 26(1): 105873, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36590898

ABSTRACT

Diagnostic services for tuberculosis (TB) are not sufficiently accessible in low-resource settings, where most cases occur, which was aggravated by the COVID-19 pandemic. Early diagnosis of pulmonary TB can reduce transmission. Current TB-diagnostics rely on detection of Mycobacterium tuberculosis (Mtb) in sputum requiring costly, time-consuming methods, and trained staff. In this study, quantitative lateral flow (LF) assays were used to measure levels of seven host proteins in sera from pre-COVID-19 TB patients diagnosed in Europe and latently Mtb-infected individuals (LTBI), and from COVID-19 patients and healthy controls. Analysis of host proteins showed significantly lower levels in LTBI versus TB (AUC:0 · 94) and discriminated healthy individuals from COVID-19 patients (0 · 99) and severe COVID-19 from TB. Importantly, these host proteins allowed treatment monitoring of both respiratory diseases. This study demonstrates the potential of non-sputum LF assays as adjunct diagnostics and treatment monitoring for COVID-19 and TB based on quantitative detection of multiple host biomarkers.

14.
Pathogens ; 11(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35889984

ABSTRACT

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a globally prevalent infectious disease with significant animal welfare and economic impact. Difficulties in implementing test-and-slaughter measures in low- and middle-income countries (LMICs) and the underperformance of the current diagnostics establish a clear need to develop improved diagnostics. Adaptive immunity biomarkers other than IFNγ could be useful as suggested by various gene expression studies; however, a comprehensive assessment at the protein level is lacking. Here, we screened a range of chemokines and cytokines for their potential as biomarkers in samples from M. bovis experimentally challenged or naive animals. Although serum concentrations for most proteins were low, the pro-inflammatory markers, IL-2, CXCL-9, IP-10 and CCL4, in addition to IFNγ, were found to be significantly elevated in bovine tuberculin (PPDb)-stimulated whole blood supernatants. Further assessment of these molecules in BCG-vaccinated with or without subsequent M. bovis challenge or naive animals revealed that PPDb-specific IL-2 and IP-10, in addition to IFNγ, could discriminate naive and BCG-vaccinated from M. bovis challenged animals. Moreover, these proteins, along with CCL4, showed DIVA potential, i.e., enabling differentiation of M. bovis-infected animals from BCG-vaccinated animals. Combined analysis of cytokines and chemokines could also accurately identify M. bovis infection with strong correlations observed between PPDb-specific IFNγ, IL-2 and IP-10 levels. This provides proof of concept for utilizing multiple biomarker signatures for discrimination of animals with respect to M. bovis infection or BCG vaccination status.

15.
Clin Infect Dis ; 74(12): 2136-2141, 2022 07 06.
Article in English | MEDLINE | ID: mdl-34550342

ABSTRACT

BACKGROUND: The development of a fast and accurate, non-sputum-based point-of-care triage test for tuberculosis (TB) would have a major impact on combating the TB burden worldwide. A new fingerstick blood test has been developed by Cepheid (the Xpert MTB Host Response [MTB-HR] prototype), which generates a "TB score" based on messenger RNA (mRNA) expression of 3 genes. Here we describe the first prospective findings of the MTB-HR prototype. METHODS: Fingerstick blood from adults presenting with symptoms compatible with TB in South Africa, The Gambia, Uganda, and Vietnam was analyzed using the Cepheid GeneXpert MTB-HR prototype. Accuracy of the Xpert MTB-HR cartridge was determined in relation to GeneXpert Ultra results and a composite microbiological score (GeneXpert Ultra and liquid culture) with patients classified as having TB or other respiratory diseases (ORD). RESULTS: When data from all sites (n = 75 TB, 120 ORD) were analyzed, the TB score discriminated between TB and ORD with an area under the curve (AUC) of 0.94 (95% confidence interval [CI], .91-.97), sensitivity of 87% (95% CI, 77-93%) and specificity of 94% (88-97%). When sensitivity was set at 90% for a triage test, specificity was 86% (95% CI, 75-97%). These results were not influenced by human immunodeficiency virus (HIV) status or geographical location. When evaluated against a composite microbiological score (n = 80 TB, 111 ORD), the TB score was able to discriminate between TB and ORD with an AUC of 0.88 (95% CI, .83-.94), 80% sensitivity (95% CI, 76-85%) and 94% specificity (95% CI, 91-96%). CONCLUSIONS: Our interim data indicate the Cepheid MTB-HR cartridge reaches the minimal target product profile for a point of care triage test for TB using fingerstick blood, regardless of geographic area or HIV infection status.


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Adult , HIV Infections/diagnosis , Hematologic Tests , Humans , Mycobacterium tuberculosis/genetics , Prospective Studies , Sensitivity and Specificity , Tuberculosis/diagnosis
16.
Biology (Basel) ; 10(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34943175

ABSTRACT

Nonhuman primates (NHPs) are relevant models to study the pathogenesis of tuberculosis (TB) and evaluate the potential of TB therapies, but rapid tools allowing diagnosis of active pulmonary TB in NHPs are lacking. This study investigates whether low complexity lateral flow assays utilizing upconverting reporter particles (UCP-LFAs) developed for rapid detection of human serum proteins can be applied to detect and monitor active pulmonary TB in NHPs. UCP-LFAs were used to assess serum proteins levels and changes in relation to the MTB challenge dosage, lung pathology, treatment, and disease outcome in experimentally MTB-infected macaques. Serum levels of SAA1, IP-10, and IL-6 showed a significant increase after MTB infection in rhesus macaques and correlated with disease severity as determined by pathology scoring. Moreover, these biomarkers could sensitively detect the reduction of bacterial levels in the lungs of macaques due to BCG vaccination or drug treatment. Quantitative measurements by rapid UCP-LFAs specific for SAA1, IP-10, and IL-6 in serum can be utilized to detect active progressive pulmonary TB in macaques. The UCP-LFAs thus offer a low-cost, convenient, and minimally invasive diagnostic tool that can be applied in studies on TB vaccine and drug development involving macaques.

17.
Front Microbiol ; 12: 763289, 2021.
Article in English | MEDLINE | ID: mdl-34777319

ABSTRACT

Leprosy is an infectious disease caused by Mycobacterium leprae with tropism for skin and peripheral nerves. Incessant transmission in endemic areas is still impeding elimination of leprosy. Although detection of M. leprae infection remains a challenge in asymptomatic individuals, the presence of antibodies specific for phenolglycolipid-I (PGL-I) correlate with bacterial load. Therefore, serosurveillance utilizing field-friendly tests detecting anti-PGL-I antibodies, can be applied to identify those who may transmit bacteria and to study (reduction of) M. leprae transmission. However, serology based on antibody detection cannot discriminate between past and present M. leprae infection in humans, nor can it detect individuals carrying low bacillary loads. In humans, anti-PGL-I IgM levels are long-lasting and usually detected in more individuals than anti-PGL-I IgG levels. Inherent to the characteristically long incubation time of leprosy, IgM/IgG relations (antibody kinetics) in leprosy patients and infected individuals are not completely clear. To investigate the antibody response directly after infection, we have measured antibody levels by ELISA, in longitudinal samples of experimentally M. leprae infected, susceptible nine-banded armadillos (Dasypus novemcinctus). In addition, we assessed the user- and field-friendly, low-cost lateral flow assay (LFA) utilizing upconverting reporter particles (UCP), developed for quantitative detection of human anti-PGL-I IgM (UCP-LFA), to detect treatment- or vaccination-induced changes in viable bacterial load. Our results show that serum levels of anti-PGL-I IgM, and to a lesser extent IgG, significantly increase soon after experimental M. leprae infection in armadillos. In view of leprosy phenotypes in armadillos, this animal model can provide useful insight into antibody kinetics in early infection in the various spectral forms of human leprosy. The UCP-LFA for quantitative detection of anti-PGL-I IgM allows monitoring the efficacy of vaccination and rifampin-treatment in the armadillo leprosy model, thereby providing a convenient tool to evaluate the effects of drugs and vaccines and new diagnostics.

18.
PLoS Negl Trop Dis ; 15(11): e0009924, 2021 11.
Article in English | MEDLINE | ID: mdl-34758041

ABSTRACT

The World Health Organization (WHO) endorsed diagnosis of leprosy (also known as Hansen's disease) entirely based on clinical cardinal signs, without microbiological confirmation, which may lead to late or misdiagnosis. The use of slit skin smears is variable, but lacks sensitivity. In 2017-2018 during the ComLep study, on the island of Anjouan (Union of the Comoros; High priority country according to WHO, 310 patients were diagnosed with leprosy (paucibacillary = 159; multibacillary = 151), of whom 263 were sampled for a skin biopsy and fingerstick blood, and 260 for a minimally-invasive nasal swab. In 74.5% of all skin biopsies and in 15.4% of all nasal swabs, M. leprae DNA was detected. In 63.1% of fingerstick blood samples, M. leprae specific antibodies were detected with the quantitative αPGL-I test. Results show a strong correlation of αPGL-I IgM levels in fingerstick blood and RLEP-qPCR positivity of nasal swabs, with the M. leprae bacterial load measured by RLEP-qPCR of skin biopsies. Patients with a high bacterial load (≥50,000 bacilli in a skin biopsy) can be identified with combination of counting lesions and the αPGL-I test. To our knowledge, this is the first study that compared αPGL-I IgM levels in fingerstick blood with the bacterial load determined by RLEP-qPCR in skin biopsies of leprosy patients. The demonstrated potential of minimally invasive sampling such as fingerstick blood samples to identify high bacterial load persons likely to be accountable for the ongoing transmission, merits further evaluation in follow-up studies.


Subject(s)
Leprosy/diagnosis , Mycobacterium leprae/isolation & purification , Adolescent , Child , Comoros/epidemiology , DNA, Bacterial/genetics , Disability Evaluation , Female , Humans , Leprosy/epidemiology , Leprosy/microbiology , Male , Mycobacterium leprae/classification , Mycobacterium leprae/genetics
19.
Vaccine ; 39(50): 7230-7237, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34688497

ABSTRACT

Leprosy is an infectious disease caused by Mycobacterium leprae leading to irreversible disabilities along with social exclusion. Leprosy is a spectral disease for which the clinical outcome after M. leprae infection is determined by host factors. The spectrum spans from anti-inflammatory T helper-2 (Th2) immunity concomitant with large numbers of bacteria as well as antibodies against M. leprae antigens in multibacillary (MB) leprosy, to paucibacillary (PB) leprosy characterised by strong pro-inflammatory, Th1 as well as Th17 immunity. Despite decades of availability of adequate antibiotic treatment, transmission of M. leprae is unabated. Since individuals with close and frequent contact with untreated leprosy patients are particularly at risk to develop the disease themselves, prophylactic strategies currently focus on household contacts of newly diagnosed patients. It has been shown that BCG (re)vaccination can reduce the risk of leprosy. However, BCG immunoprophylaxis in contacts of leprosy patients has also been reported to induce PB leprosy, indicating that BCG (re)vaccination may tip the balance between protective immunity and overactivation immunity causing skin/nerve tissue damage. In order to identify who is at risk of developing PB leprosy after BCG vaccination, amongst individuals who are chronically exposed to M. leprae, we analyzed innate and adaptive immune markers in whole blood of household contacts of newly diagnosed leprosy patients in Bangladesh, some of which received BCG vaccination. As controls, individuals from the same area without known contact with leprosy patients were similarly assessed. Our data show the added effect of BCG vaccination on immune markers on top of the effect already induced by M. leprae exposure. Moreover, we identified BCG-induced markers that differentiate between protective and disease prone immunity in those contacts.


Subject(s)
BCG Vaccine , Leprosy , Antigens, Bacterial , Humans , Leprosy/prevention & control , Mycobacterium leprae , Skin , Vaccination
20.
PLoS Negl Trop Dis ; 15(8): e0009667, 2021 08.
Article in English | MEDLINE | ID: mdl-34449763

ABSTRACT

BACKGROUND: Leprosy elimination primarily targets transmission of Mycobacterium leprae which is not restricted to patients' households. As interruption of transmission is imminent in many countries, a test to detect infected asymptomatic individuals who can perpetuate transmission is required. Antibodies directed against M. leprae antigens are indicative of M. leprae infection but cannot discriminate between active and past infection. Seroprevalence in young children, however, reflects recent M. leprae infection and may thus be used to monitor transmission in an area. Therefore, this literature review aimed to evaluate what has been reported on serological tests measuring anti-M. leprae antibodies in children without leprosy below the age of 15 in leprosy-endemic areas. METHODS AND FINDINGS: A literature search was performed in the databases Pubmed, Infolep, Web of Science and The Virtual Health Library. From the 724 articles identified through the search criteria, 28 full-text articles fulfilled all inclusion criteria. Two additional papers were identified through snowballing, resulting in a total of 30 articles reporting data from ten countries. All serological tests measured antibodies against phenolic glycolipid-I or synthetic derivatives thereof, either quantitatively (ELISA or UCP-LFA) or qualitatively (ML-flow or NDO-LID rapid test). The median seroprevalence in children in endemic areas was 14.9% and was stable over time if disease incidence remained unchanged. Importantly, seroprevalence decreased with age, indicating that children are a suitable group for sensitive assessment of recent M. leprae infection. However, direct comparison between areas, solely based on the data reported in these studies, was impeded by the use of different tests and variable cut-off levels. CONCLUSIONS: Quantitative anti-PGL-I serology in young children holds promise as a screening test to assess M. leprae infection and may be applied as a proxy for transmission and thereby as a means to monitor the effect of (prophylactic) interventions on the route to leprosy elimination.


Subject(s)
Antibodies, Bacterial/blood , Leprosy/epidemiology , Mycobacterium leprae/isolation & purification , Antigens, Bacterial/immunology , Child , Child, Preschool , Contact Tracing , Endemic Diseases , Family Characteristics , Humans , Leprosy/blood , Leprosy/transmission , Mycobacterium leprae/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...